Any Questions? Need More Information?

Should you have any questions, call our Mushroom Hotline at (360) 426-9292. Our hours are 8:30am–4:30pm Pacific Time, Mondays through Fridays. We will be happy to help you! We also offer technical support for our products via email at info@fungi.com.

By Paul Stamets. This book is a manual for the mycological rescue of the planet. *Mycelium Running* marks the dawn of a new era: the use of mycelial membranes for ecological health. Linking mushroom cultivation, permaculture, ecoforestry, bioremediation and gardening, mycologist Paul Stamets makes the case that mushroom farms can be reinvented as healing arts centers, steering ecological evolution for the benefit of humans living in harmony with its inhabitants. Moreover, *Mycelium Running* has chapters on nutrition, medicinal properties, log and stump cultivation, natural culture, and much more. Softcover, 356 pages, with over 360 color photographs. $35.00 + Shipping & Handling.

We supply and instruct mushroom growers worldwide, amateurs and professionals alike. Contact us via phone, fax or email for a free color brochure. Or you can browse our complete product line and order securely with your Visa, MasterCard, American Express or Discover Card at our Web site, www.fungi.com.

If you purchased this Fungi Perfecti® product from another retailer or catalog company, please offer them the courtesy of your continued business. Thank you!

© Paul Stamets, all rights reserved.
The Mycelium Running Oyster Patch™
(Pleurotus ostreatus)

The Mycelium Running Oyster Patch is intended for more advanced cultivators who are eager to grow spawn on a variety of substrates (organic plant materials). In the following instruction booklet, you will find information about the inoculation of various growing media for indoor and outdoor cultivation, as well as helpful tips for successful fruiting. For more detailed information about the methods described here, please consult Paul Stamets’ book Mycelium Running: How Mushrooms Can Help Save The World.

This strain grows within a wide range of temperatures, producing a beige fruit in colder temperatures, and a white fruit during warmer periods. They are called “Oyster” mushrooms because they resemble the shellfish oysters. While this is truly a versatile strain, we find that this kit produces the best results when kept within the ideal fruiting temperature (55–75 °F).

Should you experience any problems when fruiting your oyster mushrooms, please reference the troubleshooting guide in the back of this booklet. Our customer support team is also available for consultation Monday–Friday, from 8:30am–4:30pm (PST). Give us a call at (800) 780-9126, or send emails to info@fungi.com, and we’ll be glad to answer any questions you may have!

The Spawn

The Mycelium Running Oyster Patch consists of approximately 1 gallon of Pleurotus ostreatus sawdust spawn and a perforated plastic humidity tent. This spawn can be used to inoculate various substrates including wood chips, cereal straws, deciduous hardwood logs, and coffee grounds. If you will not be able to use the spawn within one week, refrigeration can slow its growth for up to 3 weeks before it must be used. Following refrigeration, allow the spawn to rest at room temperature for 2 days prior to inoculation. Should mushrooms begin to form, the spawn is still viable for further use; however, you will need to remove the mushrooms before inoculating the substrate.

This Oyster mushroom strain will grow on a variety of organic plant materials. If growing on logs, stumps or wood chips, deciduous hardwoods such as alder, poplar, aspen, elm, beech, maple, or similar wood types are all good choices. However, we don’t recommend using cedar, redwood or conifers as they are not compatible with this species of fungi. To ensure success, it is best to use “fresh” materials—recently cut, clean materials that have not been exposed to any contamination.

Harvest and Consumption

Pearl Oyster mushrooms are at the ideal stage for harvest when the caps are still slightly convex. Harvest the Oyster mushrooms by cutting or twisting them off of the substrate, as close to the base as possible. Because Oyster mushrooms grow in shelf-like clusters, it is necessary to harvest the entire cluster at the same time, otherwise, any remaining tissue can lead to contamination as it decays.

All mushrooms have very tough cell walls made of chitin, and therefore should be well cooked before being eaten. Otherwise, the nutrients remain locked inside the cells, and are not readily available for our bodies to absorb. Oyster mushrooms are delicious sliced and stir-fried over a high heat with garlic, or sautéed and served in a Caesar salad. They can be chopped in a food processor and used in the making of healthful “garden-burgers”, added to soups or stews or served as a garnish for chops, poultry or fish. Their culinary use is limited only by your imagination.

Note: never eat a mushroom unless you are sure of its identification. The first time you eat any mushroom new to you, consume a small portion and wait 24–48 hours. If no undesirable effects occur, you may safely assume that you do not have an allergy to this mushroom. A small percentage of the population (estimated at 1–2%) are “allergic” to mushrooms, that is, that their bodies cannot produce the enzymes necessary to digest them, particularly in raw form. They typically suffer temporary, albeit unpleasant, gastrointestinal discord.

Thank you for purchasing our product! We wish you luck in your future fungal endeavors. Keep the Mycelium Running & Happy Mushrooming!

The Folks at Fungi Perfecti

The ideal stage for harvesting your Oyster mushrooms is when the caps are still slightly convex, like this.

Your Oyster Mushrooms are approaching over-maturity when the caps begin to flatten out and uplift, like this.
Be sure to use clean, non-chlorinated, non-distilled water. Spring water, well water, or filtered water work the best. If you do not have access to these, boiled tap water is also suitable. When handling spawn or substrate, it is important to have clean hands—wash with soap and water, followed by a rinse with 70% isopropyl alcohol (available in most drug stores) to help reduce risk of contamination.

Indoor Cultivation

Please note: Mature mushrooms produce spores. Oyster Mushroom spores will appear as a white dust or powder on the surrounding surface and on the Patch itself. Spores will easily wipe off of most smooth surfaces such as painted wood and Formica, but may stick to tablecloths or other highly porous surfaces.

When picking a location for indoor mushroom growing, it’s important to remember three things: light, oxygen, and humidity.

• Light: While Oyster mushrooms are not photosynthetic, they are photo-sensitive. The established mycelium senses light, and will fruit when enough ambient light (not direct sunlight) is present—enough light to comfortably read a book.

• Oxygen: Mycelium inhales oxygen and exhales CO₂, just like humans. It’s important to make sure that you have adequate air flow around the mycelium.

• Humidity: During fruiting, the mycelium requires elevated moisture & humidity. Using a spray bottle, spray the kit regularly (an average of 2 times daily) so that moisture droplets appear on the surface of the mycelium. In arid climates, you may need to mist your Patch more often.

Bucket Preparation

5-gallon buckets can be useful vessels for cultivating fungi indoors using many of the methods outlined below. Here are some tips for preparing a 5-gallon bucket to grow mushrooms:

1. Drill 5–10 holes in the bottom of a 5-gallon bucket for drainage.
2. Drill 5–10 ¼ to ½ inch holes around the circumference of the bucket, just above the surface of the substrate, to draw off carbon dioxide.
3. Clean bucket using soap and water. Sterilize the bucket using 70% isopropanol.
4. Inoculate the substrate using one of the techniques described below.

Straw Inoculation

Cereal straws (such as oat, rice, wheat, rye, sorghum, timothy & barley) are best for mushroom cultivation. Avoid using alfalfa or other “hot” or “green”
hays because they are too high in available nitrogen, and they tend to favor the growth of unwanted organisms such as mold and bacteria. We recommend chopping or shredding the straw prior to soaking, as this will increase the surface area and make it easier to stuff into your fruiting container.

Hot water pasteurization method

- Soak the chopped straw in 150 °F water for 1 hour to pasteurize it.
- Remove straw from water and allow it to cool to below 90 °F on a thoroughly cleaned surface.
- Mix the spawn into soaked straw with clean hands.
- Stuff the inoculated straw into clean plastic bags with about 5 pounds of straw per bag (on average, 3–4 inoculated bags may be generated from each single bag of sawdust spawn).
- Punch several holes in the plastic bag with a clean framing nail, spaced about 2 inches apart, so mushrooms can fruit from the holes. Alternately, the inoculated straw can be packed into a 5-gallon bucket as described above in the bucket preparation section.
- Store your bags or bucket in a warm area (around 70°) with access to indirect light as the spawn incubates, allowing the mycelium to grow throughout the substrate. Colonization will take an average of 1–2 weeks, though this will vary due to environmental factors.
- Once the mycelium has run throughout the straw, your patch is fully “colonized” and ready to fruit.
- To induce fruiting, put the humidity tent around the plastic bags or the bucket full of straw, misting into the tent two to three times a day to maintain high humidity.

Hydrogen peroxide method

This method is an alternative to the hot water pasteurization technique for preparing cereal straws. The hydrogen peroxide is able to kill bacteria and fungal spores, without inhibiting the growth of the mycelium. While hydrogen peroxide is prepared chemically, it is completely non-toxic, breaking down into oxygen and water, leaving no chemical residue. We recommend using cold water for this process as hot water will cause the peroxide to oxidize quicker, becoming less effective.

Hydrogen peroxide is available in a variety of concentrations, and commonly found in drug stores at a 3% concentration. Working with a 3% hydrogen peroxide concentration is perfectly safe, however, care is needed when working with higher concentrations (especially at 30–35%). These higher concentrations will burn and bleach skin, so always wear gloves to protect

The “Totem” Technique

The “Totem” inoculation method is also a great option for larger diameter stumps or logs. Simply sandwich the sawdust spawn between the cut log faces and stack vertically. Cover the inoculation area with plastic or rope as explained in the wedge technique above.

Troubleshooting / Frequently Asked Questions

Q: What if mushrooms are forming, but in elongated, octopus-shaped formations rather than the classic clusters of “shell” shaped fruits?
A: This kind of growth (commonly referred to as “coral” growth) can usually be attributed lack of oxygen and/or lack of light.
- Make sure there is adequate air flow around the mycelium. If mushrooms form under high CO₂ concentrations, the stems will
include well or rain water, boiled tap or spring water. If your only option is chlorinated tap water we recommend filling a tub or some buckets and letting them sit overnight to dissipate the chlorine. Please note: If you incubate your logs in a naturally wet area, they may begin fruiting on their own. Check your logs for primordia (baby mushrooms) forming before you soak the logs. If mushrooms are already forming, do not soak your logs; instead, treat them as if they have already been soaked. After soaking, continue watering 1–2 times daily and mushrooms should start forming within 2 weeks.

There are various strategies explained below and more in depth information on log and stump cultivation detailed in chapter 11 of Mycelium Running by Paul Stamets.

Sawdust spawn plug inoculation
(Requires a sawdust palm inoculator, available through www.fungi.com):
- Using a 12mm drill bit, drill holes in a triangular pattern, spaced of 2–4 inches apart, and 2 inches deep, over the surface of the log.
- Compress the sawdust by inserting the inoculator into the spawn mass and then insert sawdust into your pre-drilled holes.
- Brush melted food grade wax over the holes to contain and protect the spawn.

The “Wedge” Technique:
- Cut wedges from a log using a chainsaw.
- With clean hands, pack crevices with mushroom spawn.
- Replace wedges and secure with nails, screws or straps.
- Cover the inoculated wedge area using a cut strip of black plastic, securing with a staple gun. (This will help prevent dehydration of the freshly inoculated log.)
- Once you have inoculated the log, situate it in a shaded and naturally moist location outdoors. Logs can be placed either horizontally on your skin and adhere to any safety precautions noted on the hydrogen peroxide being used.

For this method, a dilution of .3% hydrogen peroxide will be needed. To determine how much concentrated peroxide will be needed to get a .3% solution, use the following equation:

Desired concentration DIVIDED BY stock concentration MULTIPLIED BY volume EQUALS Quantity of stock concentration needed

Example: If you’re working with the normal 3% peroxide from a drug store, and you’re trying to fill a 5-gallon bucket with .3% solution, this would be your equation:

.003 (desired) DIVIDED BY .03 (stock) MULTIPLIED BY 640 oz (5 gallons) EQUALS 64 oz.

So in this example, 6.4 oz of 3% solution would go into 5 gallons of water to create a diluted .3% solution for soaking straw. 5-gallon buckets are suitable vessels for soaking straw. You will likely need to prepare about two 5-gallon buckets full of straw for inoculating with your Mycelium Running Oyster Patch.
- Stuff straw into soaking vessel. Chopped straw is preferred for this application, as the peroxide is able to saturate chopped straw easier than whole straw.
- Fill the vessel with enough of the diluted 0.3% peroxide solution to submerge the straw. (A clean rock or other weight may be used to help submerge the straw in water.)
- Cover the soaking straw with a tarp or piece of cloth to keep extraneous debris out of the soaking solution. Keep the vessel in the shade to prevent the water from getting too hot.
- Let the straw soak in the .3% hydrogen peroxide solution for 24 hours. It is normal for the solution to bubble as it treats the straw and breaks down into oxygen and water.

Drain the hydrogen peroxide solution from the straw and inoculate using the same methods as described in the “hot water pasteurization” section.

Wood Chip Inoculation and the Soaking Method
The soaking method is a very easy, low-tech way to prepare wood chips. This process acts as a biological pasteurization, eliminating the need to heat sterilize or pasteurize substrates. As the substrate soaks, anaerobic bacteria proliferate. When the water is drained off the substrate prior to inoculation, the anaerobic bacteria die off and can even act as a food source for the mycelium. We have had success using this method with both wood chips and straw. The Mycelium Running Oyster Patch can be used to inoculate approximately
8 gallons (about 15–20 pounds) of wood chips or cereal straw.

- Soak the wood chips in water for 1–2 weeks. This can be done in 5-gallon buckets or other vessels that will hold water. Be sure to use clean, non-chlorinated, non-distilled water. It’s okay if some of the chips aren’t totally submerged. If soaking outdoors, cover the vessel with a lid or tarp in order to keep extraneous debris out. It’s normal for the fermenting chips to emit a distinctive sweet smell. Biofilms may also develop on the surface of the water.
- After the chips have soaked for two weeks, remove from water and spread onto a clean surface to expose the chips to air.
- Break up the spawn and thoroughly mix it into the soaked chips.
- The inoculated chips can then be put into 5-gallon buckets (or other suitable containers) to incubate and fruit indoors. (Refer to the “bucket preparation” instructions above in the Indoor Cultivation overview.)

A slight variation to this method is to stuff the inoculated chips into an untreated burlap sack to make a “Mycobag”. Be sure to use untreated food grade burlap for this application (e.g., a coffee bean sack). Soak the burlap in a .3% hydrogen peroxide solution for 1 hour to help eliminate potential contaminants prior to putting the inoculated chips into it. Once the bag is full, tie it closed. Put the burlap sack in a larger clean plastic bag, tying the plastic bag closed around the neck of the burlap. This will allow the neck of the burlap to act as a wick for air exchange in the bag.

Coffee Ground Inoculations

The Mycelium Running Oyster Patch can also be used to inoculate 3 gallons of spent coffee grounds. If collecting grounds over a long period of time—more than a day or two—freeze them immediately after use to discourage mold growth. If frozen, allow the coffee grounds to sit at room temperature for 24 hours to thaw before using.

- Prepare a clean bucket (see “bucket preparation” information above in the Indoor Cultivation overview).
- Fill bucket approximately half way with coffee grounds.
- Moisten with water and drain off excess.
- Break up spawn with clean hands and mix thoroughly into coffee grounds, compressing by hand once complete. If the surface of the substrate is more than about an inch below the rim of the bucket, it is recommended that you drill 5–10 ¼ to ½ inch holes around the circumference of the bucket above the surface of the substrate, to draw off carbon dioxide.
- Cover the top with the perforated humidity tent and set in a shady location, making sure that the mycelium has access to indirect light and adequate air flow. Please note: if placing your bucket outside, be sure that it does not get “over watered” by rain, and store your patch in a secure location so that insects and animals do not enjoy the fruits of your labor before you have had the chance to harvest your mushrooms!
- Allow your patch to incubate until you see the mycelium running throughout the surface.
- Once fully colonized, begin misting your patch twice daily and within 2–3 weeks, mushrooms should begin to form provided you are within the ideal temperature range of 55–75 °F.

Outdoor Cultivation

When considering outdoor cultivation, it is important to be aware of the temperature and humidity in the environment. As a rule, do not expose inoculated substrates to extreme temperatures for the first 30 days. Avoid inoculating if temperatures will drop below 40 °F, or remain above 80 °F.

After the spawn has had some time to fully colonize, it will be able to withstand seasonal temperature variation—including freezing temperatures—so long as it is does not become dry and dehydrated. For this reason, select an outdoor location that is shady, providing only indirect/ambient light, and where you will be able to water easily during the dry season.

Hardwood Logs or Stumps

Use logs that are 4–8 inches in diameter, 3–4 feet long. It is best to inoculate freshly cut or felled wood that has rested for at least 2 weeks, but no longer than 2 months. The goal is to allow enough time for the tree’s anti-fungal compounds to dissipate, but to use it as soon as possible thereafter, reducing the risk of contamination.

Once inoculated using one of the methods described below, incubate the inoculated logs off the ground on blocks, pallets or other supports, in a shaded location for 6–9 months or until 60% colonized. It’s important to maintain sufficient moisture in the logs, so you should water once or twice every other week for 5–10 minutes, more often in more arid climates.

Once the 6–9 months have passed, if your logs look ready to fruit and if your logs aren’t already producing mushrooms, we recommend submerging the logs in a tank or bathtub of non-chlorinated, non-distilled water for 24 hours. Options
8 gallons (about 15–20 pounds) of wood chips or cereal straw.

- Soak the wood chips in water for 1–2 weeks. This can be done in 5-gallon buckets or other vessels that will hold water. Be sure to use clean, non-chlorinated, non-distilled water. It’s okay if some of the chips aren’t totally submerged. If soaking outdoors, cover the vessel with a lid or tarp in order to keep extraneous debris out. It’s normal for the fermenting chips to emit a distinctive sweet smell. Biofilms may also develop on the surface of the water.
- After the chips have soaked for two weeks, remove from water and spread onto a clean surface to expose the chips to air.
- Break up the spawn and thoroughly mix it into the soaked chips.
- The inoculated chips can then be put into 5-gallon buckets (or other suitable containers) to incubate and fruit indoors. (Refer to the “bucket preparation” instructions above in the Indoor Cultivation overview.)

A slight variation to this method is to stuff the inoculated chips into an untreated burlap sack to make a “Mycobag”. Be sure to use untreated food grade burlap for this application (e.g., a coffee bean sack). Soak the burlap in a .3% hydrogen peroxide solution for 1 hour to help eliminate potential contaminants prior to putting the inoculated chips into it. Once the bag is full, tie it closed. Put the burlap sack in a larger clean plastic bag, tying the plastic bag closed around the neck of the burlap. This will allow the neck of the burlap to act as a wick for air exchange in the bag.

Coffee Ground Inoculations

The Mycelium Running Oyster Patch can also be used to inoculate 3 gallons of spent coffee grounds. If collecting grounds over a long period of time—more than a day or two—freeze them immediately after use to discourage mold growth. If frozen, allow the coffee grounds to sit at room temperature for 24 hours to thaw before using.
- Prepare a clean bucket (see “bucket preparation” information above in the Indoor Cultivation overview).
- Fill bucket approximately half way with coffee grounds.
- Moisten with water and drain off excess.
- Break up spawn with clean hands and mix thoroughly into coffee grounds, compressing by hand once complete. If the surface of the substrate is more than about an inch below the rim of the bucket, it is recommended that you drill 5–10 ¼ to ½ inch holes around the circumference of the bucket above the surface of the substrate, to draw off carbon dioxide.
- Cover the top with the perforated humidity tent and set in a shady location, making sure that the mycelium has access to indirect light and adequate air flow. Please note: if placing your bucket outside, be sure that it does not get “over watered” by rain, and store your patch in a secure location so that insects and animals do not enjoy the fruits of your labor before you have had the chance to harvest your mushrooms!
- Allow your patch to incubate until you see the mycelium running throughout the surface.
- Once fully colonized, begin misting your patch twice daily and within 2–3 weeks, mushrooms should begin to form provided you are within the ideal temperature range of 55–75 °F.

Outdoor Cultivation

When considering outdoor cultivation, it is important to be aware of the temperature and humidity in the environment. As a rule, do not expose inoculated substrates to extreme temperatures for the first 30 days. Avoid inoculating if temperatures will drop below 40 °F, or remain above 80 °F.

After the spawn has had some time to fully colonize, it will be able to withstand seasonal temperature variation—including freezing temperatures—so long as it is does not become dry and dehydrated. For this reason, select an outdoor location that is shady, providing only indirect/ambient light, and where you will be able to water easily during the dry season.

Hardwood Logs or Stumps

Use logs that are 4–8 inches in diameter, 3–4 feet long. It is best to inoculate freshly cut or felled wood that has rested for at least 2 weeks, but no longer than 2 months. The goal is to allow enough time for the tree’s anti-fungal compounds to dissipate, but to use it as soon as possible thereafter, reducing the risk of contamination.

Once inoculated using one of the methods described below, incubate the inoculated logs off the ground on blocks, pallets or other supports, in a shaded location for 6–9 months or until 60% colonized. It’s important to maintain sufficient moisture in the logs, so you should water once or twice every other week for 5–10 minutes, more often in more arid climates.

Once the 6–9 months have passed, if your logs look ready to fruit and if your logs aren’t already producing mushrooms, we recommend submerging the logs in a tank or bathtub of non-chlorinated, non-distilled water for 24 hours. Options
include well or rain water, boiled tap or spring water. If your only option is chlorinated tap water we recommend filling a tub or some buckets and letting them sit overnight to dissipate the chlorine. **Please note:** If you incubate your logs in a naturally wet area, they may begin fruiting on their own. Check your logs for primordia (baby mushrooms) forming before you soak the logs. If mushrooms are already forming, do not soak your logs; instead, treat them as if they have already been soaked. After soaking, continue watering 1–2 times daily and mushrooms should start forming within 2 weeks.

There are various strategies explained below and more in depth information on log and stump cultivation detailed in chapter 11 of *Mycelium Running* by Paul Stamets.

Sawdust spawn plug inoculation
(Requires a sawdust palm inoculator, available through www.fungi.com):
- Using a 12mm drill bit, drill holes in a triangular pattern, spaced of 2–4 inches apart, and 2 inches deep, over the surface of the log.
- Compress the sawdust by inserting the inoculator into the spawn mass and then insert sawdust into your pre-drilled holes.
- Brush melted food grade wax over the holes to contain and protect the spawn.

The “Wedge” Technique:
- Cut wedges from a log using a chainsaw.
- With clean hands, pack crevices with mushroom spawn.
- Replace wedges and secure with nails, screws or straps.
- Cover the inoculated wedge area using a cut strip of black plastic, securing with a staple gun. (This will help prevent dehydration of the freshly inoculated log.)
- Once you have inoculated the log, situate it in a shaded and naturally moist location outdoors. Logs can be placed either horizontally on

your skin and adhere to any safety precautions noted on the hydrogen peroxide being used.

For this method, a dilution of .3% hydrogen peroxide will be needed. To determine how much concentrated peroxide will be needed to get a .3% solution, use the following equation:

\[
\text{Desired concentration} \div \text{stock concentration} \times \text{volume} = \text{Quantity of stock concentration needed}
\]

Example: If you’re working with the normal 3% peroxide from a drug store, and you’re trying to fill a 5-gallon bucket with .3% solution, this would be your equation:

\[
.003 \text{ (desired)} \div .03 \text{ (stock)} \times 640 \text{ oz (5 gallons)} = 64 \text{ oz.}
\]

So in this example, 6.4 oz of 3% solution would go into 5 gallons of water to create a diluted .3% solution for soaking straw. 5-gallon buckets are suitable vessels for soaking straw. You will likely need to prepare about two 5-gallon buckets full of straw for inoculating with your Mycelium Running Oyster Patch.

- Stuff straw into soaking vessel. Chopped straw is preferred for this application, as the peroxide is able to saturate chopped straw easier than whole straw.
- Fill the vessel with enough of the diluted 0.3% peroxide solution to submerge the straw. (A clean rock or other weight may be used to help submerge the straw in water.)
- Cover the soaking straw with a tarp or piece of cloth to keep extraneous debris out of the soaking solution. Keep the vessel in the shade to prevent the water from getting too hot.
- Let the straw soak in the .3% hydrogen peroxide solution for 24 hours. It is normal for the solution to bubble as it treats the straw and breaks down into oxygen and water.

Drain the hydrogen peroxide solution from the straw and inoculate using the same methods as described in the “hot water pasteurization” section.

Wood Chip Inoculation and the Soaking Method
The soaking method is a very easy, low-tech way to prepare wood chips. This process acts as a biological pasteurization, eliminating the need to heat sterilize or pasteurize substrates. As the substrate soaks, anaerobic bacteria proliferate. When the water is drained off the substrate prior to inoculation, the anaerobic bacteria die off and can even act as a food source for the mycelium. We have had success using this method with both wood chips and straw. **The Mycelium Running Oyster Patch can be used to inoculate approximately**
hays because they are too high in available nitrogen, and they tend to favor the growth of unwanted organisms such as mold and bacteria. We recommend chopping or shredding the straw prior to soaking, as this will increase the surface area and make it easier to stuff into your fruiting container.

Hot water pasteurization method
- Soak the chopped straw in 150 °F water for 1 hour to pasteurize it.
- Remove straw from water and allow it to cool to below 90 °F on a thoroughly cleaned surface.
- Mix the spawn into soaked straw with clean hands.
- Stuff the inoculated straw into clean plastic bags with about 5 pounds of straw per bag (on average, 3–4 inoculated bags may be generated from each single bag of sawdust spawn).
- Punch several holes in the plastic bag with a clean framing nail, spaced about 2 inches apart, so mushrooms can fruit from the holes. Alternately, the inoculated straw can be packed into a 5-gallon bucket as described above in the bucket preparation section.
- Store your bags or bucket in a warm area (around 70°) with access to indirect light as the spawn incubates, allowing the mycelium to grow throughout the substrate. Colonization will take an average of 1–2 weeks, though this will vary due to environmental factors.
- Once the mycelium has run throughout the straw, your patch is fully “colonized” and ready to fruit.
- To induce fruiting, put the humidity tent around the plastic bags or the bucket full of straw, misting into the tent two to three times a day to maintain high humidity.

Hydrogen peroxide method
This method is an alternative to the hot water pasteurization technique for preparing cereal straws. The hydrogen peroxide is able to kill bacteria and fungal spores, without inhibiting the growth of the mycelium. While hydrogen peroxide is prepared chemically, it is completely non-toxic, breaking down into oxygen and water, leaving no chemical residue. We recommend using cold water for this process as hot water will cause the peroxide to oxidize quicker, becoming less effective.

Hydrogen peroxide is available in a variety of concentrations, and commonly found in drug stores at a 3% concentration. Working with a 3% hydrogen peroxide concentration is perfectly safe, however, care is needed when working with higher concentrations (especially at 30–35%). These higher concentrations will burn and bleach skin, so always wear gloves to protect pallets or cinder blocks or laid out on a sand pad/bed.
- Water for a few minutes once or twice a week during dry weather and less frequently during cool, wet weather.
- After several months, remove the plastic from the logs and inspect for mycelium growth at the inoculation site. If mycelium is present, start to water your logs daily to stimulate mushroom production.

The “Totem” Technique
The “Totem” inoculation method is also a great option for larger diameter stumps or logs. Simply sandwich the sawdust spawn between the cut log faces and stack vertically. Cover the inoculation area with plastic or rope as explained in the wedge technique above.

Troubleshooting / Frequently Asked Questions

Q: What if mushrooms are forming, but in elongated, octopus-shaped formations rather than the classic clusters of “shell” shaped fruits?
A: This kind of growth (commonly referred to as “coral” growth) can usually be attributed lack of oxygen and/or lack of light.
- Make sure there is adequate air flow around the mycelium. If mushrooms form under high CO₂ concentrations, the stems will
Be sure to use clean, non-chlorinated, non-distilled water. Spring water, well water, or filtered water work the best. If you do not have access to these, boiled tap water is also suitable. When handling spawn or substrate, it is important to have clean hands—wash with soap and water, followed by a rinse with 70% isopropyl alcohol (available in most drug stores) to help reduce risk of contamination.

Indoor Cultivation

Please note: Mature mushrooms produce spores. Oyster Mushroom spores will appear as a white dust or powder on the surrounding surface and on the Patch itself. Spores will easily wipe off of most smooth surfaces such as painted wood and Formica, but may stick to tablecloths or other highly porous surfaces.

When picking a location for indoor mushroom growing, it’s important to remember three things: light, oxygen, and humidity.

- **Light:** While Oyster mushrooms are not photosynthetic, they are photo-sensitive. The established mycelium senses light, and will fruit when enough ambient light (not direct sunlight) is present—enough light to comfortably read a book.
- **Oxygen:** Mycelium inhales oxygen and exhales CO$_2$, just like humans. It’s important to make sure that you have adequate air flow around the mycelium.
- **Humidity:** During fruiting, the mycelium requires elevated moisture & humidity. Using a spray bottle, spray the kit regularly (an average of 2 times daily) so that moisture droplets appear on the surface of the mycelium. In arid climates, you may need to mist your Patch more often.

Bucket Preparation

5-gallon buckets can be useful vessels for cultivating fungi indoors using many of the methods outlined below. Here are some tips for preparing a 5-gallon bucket to grow mushrooms:

1. Drill 5–10 holes in the bottom of a 5-gallon bucket for drainage.
2. Drill 5–10 ¼ to ½ inch holes around the circumference of the bucket, just above the surface of the substrate, to draw off carbon dioxide.
3. Clean bucket using soap and water. Sterilize the bucket using 70% isopropanol.
4. Inoculate the substrate using one of the techniques described below.

Straw Inoculation

Cereal straws (such as oat, rice, wheat, rye, sorghum, timothy & barley) are best for mushroom cultivation. Avoid using alfalfa or other “hot” or “green”...
The Mycelium Running Oyster Patch™
(Pleurotus ostreatus)

The Mycelium Running Oyster Patch is intended for more advanced cultivators who are eager to grow spawn on a variety of substrates (organic plant materials). In the following instruction booklet, you will find information about the inoculation of various growing media for indoor and outdoor cultivation, as well as helpful tips for successful fruiting. For more detailed information about the methods described here, please consult Paul Stamets’ book *Mycelium Running: How Mushrooms Can Help Save The World.*

This strain grows within a wide range of temperatures, producing a beige fruit in colder temperatures, and a white fruit during warmer periods. They are called “Oyster” mushrooms because they resemble the shellfish oysters. While this is truly a versatile strain, we find that this kit produces the best results when kept within the ideal fruiting temperature (55–75 °F).

Should you experience any problems when fruiting your oyster mushrooms, please reference the troubleshooting guide in the back of this booklet. Our customer support team is also available for consultation Monday–Friday, from 8:30am–4:30pm (PST). Give us a call at (800) 780-9126, or send emails to info@fungi.com, and we’ll be glad to answer any questions you may have!

The Spawn

The Mycelium Running Oyster Patch consists of approximately 1 gallon of *Pleurotus ostreatus* sawdust spawn and a perforated plastic humidity tent. This spawn can be used to inoculate various substrates including wood chips, cereal straws, deciduous hardwood logs, and coffee grounds. If you will not be able to use the spawn within one week, refrigeration can slow its growth for up to 3 weeks before it must be used. Following refrigeration, allow the spawn to rest at room temperature for 2 days prior to inoculation. Should mushrooms begin to form, the spawn is still viable for further use; however, you will need to remove the mushrooms before inoculating the substrate.

This Oyster mushroom strain will grow on a variety of organic plant materials. If growing on logs, stumps or wood chips, deciduous hardwoods such as alder, poplar, aspen, elm, beech, maple, or similar wood types are all good choices. However, we don’t recommend using cedar, redwood or conifers as they are not compatible with this species of fungi. To ensure success, it is best to use “fresh” materials—recently cut, clean materials that have not been exposed to any contamination.

Harvest and Consumption

Pearl Oyster mushrooms are at the ideal stage for harvest when the caps are still slightly convex. Harvest the Oyster mushrooms by cutting or twisting them off of the substrate, as close to the base as possible. Because Oyster mushrooms grow in shelf-like clusters, it is necessary to harvest the entire cluster at the same time, otherwise, any remaining tissue can lead to contamination as it decays.

All mushrooms have very tough cell walls made of chitin, and therefore should be well cooked before being eaten. Otherwise, the nutrients remain locked inside the cells, and are not readily available for our bodies to absorb. Oyster mushrooms are delicious sliced and stir-fried over a high heat with garlic, or sautéed and served in a Caesar salad. They can be chopped in a food processor and used in the making of healthful “garden-burgers”, added to soups or stews or served as a garnish for chops, poultry or fish. Their culinary use is limited only by your imagination.

Note: never eat a mushroom unless you are sure of its identification. The first time you eat any mushroom new to you, consume a small portion and wait 24–48 hours. If no undesirable effects occur, you may safely assume that you do not have an allergy to this mushroom. A small percentage of the population (estimated at 1–2%) are “allergic” to mushrooms, that is, that their bodies cannot produce the enzymes necessary to digest them, particularly in raw form. They typically suffer temporary, albeit unpleasant, gastrointestinal discord.

Thank you for purchasing our product! We wish you luck in your future fungal endeavors. Keep the Mycelium Running & Happy Mushrooming!

The Folks at *fungi perfecti*
Any Questions? Need More Information?

Should you have any questions, call our Mushroom Hotline at (360) 426-9292. Our hours are 8:30am–4:30pm Pacific Time, Mondays through Fridays. We will be happy to help you! We also offer technical support for our products via email at info@fungi.com.

By Paul Stamets. This book is a manual for the mycological rescue of the planet. *Mycelium Running* marks the dawn of a new era: the use of mycelial membranes for ecological health. Linking mushroom cultivation, permaculture, ecoforestry, bioremediation and gardening, mycologist Paul Stamets makes the case that mushroom farms can be reinvented as healing arts centers, steering ecological evolution for the benefit of humans living in harmony with its inhabitants. Moreover, *Mycelium Running* has chapters on nutrition, medicinal properties, log and stump cultivation, natural culture, and much more. Softcover, 356 pages, with over 360 color photographs. $35.00 + Shipping & Handling.

We supply and instruct mushroom growers worldwide, amateurs and professionals alike. Contact us via phone, fax or email for a free color brochure. Or you can browse our complete product line and order securely with your Visa, MasterCard, American Express or Discover Card at our Web site, www.fungi.com.

If you purchased this Fungi Perfecti® product from another retailer or catalog company, please offer them the courtesy of your continued business. Thank you!

Fungi Perfecti, LLC
P.O. Box 7634 • Olympia, WA 98507, USA
ORDER LINE: (800) 780-9126 • PHONE: (360) 426-9292
FAX: (360) 426-9377 • EMAIL: info@fungi.com
www.fungi.com

© Paul Stamets, all rights reserved.